2(2y-5)+(y^2-62)=180

Simple and best practice solution for 2(2y-5)+(y^2-62)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2y-5)+(y^2-62)=180 equation:



2(2y-5)+(y^2-62)=180
We move all terms to the left:
2(2y-5)+(y^2-62)-(180)=0
We multiply parentheses
4y+(y^2-62)-10-180=0
We get rid of parentheses
y^2+4y-62-10-180=0
We add all the numbers together, and all the variables
y^2+4y-252=0
a = 1; b = 4; c = -252;
Δ = b2-4ac
Δ = 42-4·1·(-252)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-32}{2*1}=\frac{-36}{2} =-18 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+32}{2*1}=\frac{28}{2} =14 $

See similar equations:

| -8+x/4=-2 | | 2(3x-4)-6x=-8 | | 6-2y=10-6y+4y | | 7(v+61)=84 | | 223=-8+11a | | 15x/15=30/15 | | –5k–19=5–13k | | -x=3=x+3 | | 3(x-4)-2(3x+4)=4(3-×)+5x+4 | | 21=3/4n | | 8b-10=22 | | 3a+3=-1+3a+4 | | 10x-3x+87=10x+36 | | Y=9x-200 | | 5x+7x-2=3(4x+7) | | 1/3x+2=6 | | 3y+2+2y+5=92 | | -2-x-3=4x-15 | | 6s+8=2(3s+5) | | 6-3x-2x=-9 | | 4(3x+50)=2(x+40) | | 6(x=1)=6x+6 | | 2(1/2q+20)=3(2q-1)+4(2q+1) | | 4n+1.2=2•4n+.2 | | 5/8w=7 | | 3p^2=108 | | 5x+1=-8-3x | | 8•n+16.2=1.6 | | 1/799x=0.5 | | x-0.22x=476.58 | | -13=7h-32 | | (24000-6x)/120=x/160 |

Equations solver categories